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The Definition of Random Sequences
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Kolmogorov has defined the conditional complexity of an object y
when the object z is already given to us as the minimal length of a
binary program which by means of  computes y on a certain asymp-
totically optimal machine. On the basis of this definition he has
proposed to consider those elements of a given large finite popula-
tion to be random whose complexity is maximal. Almost all elements
of the population have a complexity which is close to the maximal
value.

In this paper it is shown that the random elements as defined by
Kolmogorov possess all conceivable statistical properties of random-
ness. They can equivalently be considered 'as the elements which
withstand a certain universal stochasticity test. The definition is
extended to infinite binary sequences and it is shown that the non
random sequences form a maximal constructive null set. Finally,
the Kollektivs introduced by von Mises obtain a definition which
seems to satisfy all intuitive requirements.

I. THE COMPLEXITY MEASURE OF KOLMOGOROV

Consider the set of all words over some finite alphabet. The length n of
such a string = £ --- £, will be denoted by I(z). Let A be an algo-
rithm transforming finite binary sequences into words over some finite
alphabet. We suppose that the algorithm concept has been made precise
in one of the various equivalent ways that have been proposed, e.g. by
means of the theory of partial recursive functions.

Following Kolmogorov we define the complexity of the element = with
respect to the algorithm A as the length of the shortest program which
computes it,

Ki(z) = min l(p).
A(p)=z
If there is no such program, i.e. A(p) = z for all binary strings p, we
put K (x) = + . This complexity measure depends in an essential way
on the basic algorithm A. We almost get rid of this dependence by
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means of the following theorem, proved by Kolmogorov and Solomonoff
(1964).
There exists an algorithm A such that for any algorithm B

I{A(x) é KB(:I;) + c,

where ¢ 1s @ constant (dependent on A and B but not on z).

Such an algorithm is called asymptotically optimal by Kolmogorov
and universal by Solomonoff. The complexity of = with respect to a fixed
algorithm of this type we shall call simply the complexity of z and de-
note by K(x).

In an analogous way we can introduce the concept of conditional com-
plexity. To do this, let p, x — A (p, ) = y be an algorithm of two vari-
ables, where p is a finite binary sequence, called the program, z a string
over some alphabet, and y a word over a possibly different alphabet. The
quantity

Ka(y|z) = minl(p)
Alp,z)=y
will be called the conditional complexity of  given « with respect to A.
There exists an algorithm A such that, for an arbitrary algorithm B,

Kuylz) = Ko(ylz) + ¢,

where ¢ s a conslant (dependent on A and B but not on x and y).

A proof of this theorem, which is not more complicated than that of the
previous one, was given by Kolmogorov (1965). Again we shall fix a
universal algorithm, whose existence is guaranteed by the theorem, and
write simply K(y|zx), speaking of the conditional complexity of y
given x.

It is an immediate consequence of the theorem that there exists a con-
stant ¢ such that

Ktk - tn) =ntc
for every binary string &% - -+ £ . On the other hand, the number of
sequences of length n for which

K&gb -t n)zn—c

is larger than (1 — 27 °)2%, so that for large n the overwhelming ma-
jority of sequences &é; --- £, have a conditional complexity approxi-
mately equal to the maximal value n. Let us call these elements of maxi-
mal complexity random sequences. The thesis has been put forward by
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Kolmogorov that this provides an adequate formalization of our intuitive
notion of randomness.

II. A UNIVERSAL TEST FOR RANDOMNESS

In order to justify the proposed definition of randomness we have to
show that the sequences, which are random in the stated sense, possess
the various properties of stochasticity with which we are acquainted in
the theory of probability. Assuming the binary alphabet to consist of the
letters 0 and 1, the number of ones in &% - - - &, should be close to n/2,
the number of zero runs to n/4, the number of occurrences of 0110 to
n/16, and so on. It is not difficult to provide a proof in each of these
cases, but the question arises whether it is possible to prove once and for
all that the random sequences introduced possess, in some sense, all pos-
sible propertics of stochasticity. Such a theorem should enable us to
carry over automatically the various theorems of probability theory
on random sequences. For example, with s, = & + &4+ -+ + &,
we should be able to obtain a bound on |2s, — n| by means of
K(ti& - - - £, | n) and n, this bound being of the order of magnitude v/n
when K (&8, - - - £, | n) equals  approximately.

Let us borrow ideas from statistics. Consider a test for randomness, for
example the one which rejects when the relative frequency of ones differs
too much from 3. Since we are always interested merely in the order of
magnitude of the level of significance, we may restrict our attention to
levels e = 3, 1, %, - -+ . The particular test mentioned is given by the
following prescription.

Reject the hypothesis of randomness on the level e = 27 provided

|28, — n| > f(m, n).

Here fis determined by the requirement that the number of sequences of
length n for which the inequality holds should be =2"". Further, it
should not be possible to diminish f without violating this condition.
Generally, a test is given by a prescription which, for cvery level of
significance ¢, tells us for what observations (in our case, binary strings)
the hypothesis should be rejected. Takinge = 27", m = 1,2, - -, this
amounts to saying that we have an effective description of the set

UCNXX

(N denotes the set of natural numbers and X the set of all binary strings)
of nested critical regions
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Un = {z;m,z € U},
Un2 Upnpa, m=1,2,---

The condition that U, be a critical region on the level ¢ = 27, amounts
to requiring that the number of sequences of length n contained in U,
be 277,

Invoking the thesis of Church, we now formalize the fact that the
family of critical regions is given by an explicit prescription by assuming
the set U to be recursively enumerable. This is the weakest requirement
we can imagine, and, in fact, all the tests of use in statistical practice
are even of a much simpler type. In the following we shall, when speaking
of a test, understand a recursively enumerable set U, interpreted as the
family of critical regions, satisfying the restrictions above.

Having thus made precise the concept of a test, we are able to prove
the following theorem, which, as will be shown below, could have been
stated equivalently in terms of the conditional complexity measure and
proved as a corollary of the second theorem of the previous section.
Roughly speaking, it states that there exists a test, to be called universal,
such that if a binary sequence is random with respect to that test, then
it is random with respect to cvery conceivable test, neglecting a change
in the level of significance.

There exists a test U such that, for every test V,

Vite € Un, m=12-

where ¢ s a constant (dependent on U and V).

The proof is accomplished by first proving that the set of all tests is
effectively enumerable.

There exists a recursively enumerable set T © N X N X X such that U
s a test if and only if

U={mz;i,mz€ T}

forsomed = 1,2, +.., :

It is well-known that the set of all recurswely cnumerable subsets of
N X X is effectively enumerable. We exploit this fact by choosing a
partial recursive function fof type N X N - N X X with the property
that if it is defined for ¢, j, then ¢, 1,4, 2, - -- , 7,7 — 1 likewise belong to
the domain of definition. Further, a set in N X X is recursively enumer-
able if and only if it equals
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{f(Z:]);] =12, "'}

for some ¢ = 1, 2, --- . The sets in this cnumeration are now, if neces-
sary, modified so that they all satisfy the conditions for a test. Remember
that a recursively enumerable set U € N X X is defined to be a test if,
firstly,

Un2 Unpp, m=12 .-,

and, secondly, the number of clements of length n contained in U,, is
<27 for all m and n. Fix an arbitrary 7 = 1, 2, - - . If f(4, ) is unde-
fined for all 7, the corresponding recursively enumerable set is empty and
hence trivially a test. Otherwise, calculate f(4, 1) = au, ;. If the set
of all m, z; for m = my satisfies the conditions for a test (in this case,
m < l(x1)), we include ¢, m, 2y into T for all m = my . Otherwise the
section of T at 7 remains empty and the modification procedure is com-
pleted for this 7. In the former case we proceed by calculating
f(Z, 2) = ma, x, if defined and adding ¢, m, x» to T for all ;m £ m, pro-
vided the conditions for a test are not violated. If they are, the section
of T at ¢ is left unaffected by the last step and the modification is finished.
It should now be evident how the construction is carried on. We note
that the scction of 7 at 7 is a test for every 7 = 1, 2, - - - which equals
{f(5,7);7 = 1, 2, ---} provided this set already satisfies the definition
of a test. The proof is finished.

The universal test U is obtained as the image of 7" under the mapping

i, m -+ 1,2 —m, .
For suppose that V7 is an arbitrary test. Then, for some 7,

V = {m,z;7,m,z € T},
so that

Vapi = f{a;e,m+4,2€T} C{z;maz € Ul = Un

forallm = 1, 2, --- . We see that the constant ¢ which figures in the
theorem may be chosen as the Godel number of the test ¥ in the enumer-
ation 7.

As in statistical practice, it is convenient to introduce the critical level,
the smallest level of significance on which the hypothesis is rcjected.
Sinee we have chosen to work with m instead of e = 27", we introduce

my(x) = max m,
zEUnm
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where the dependence on the particular test used is indicated by the
subscript U. In order that my(x) be defined for all z we define U to
be the set of all binary strings, so that

-0 = my(z) £ l(z)

for all x. In terms of the critical level the existence of a universal test
can be stated thus. There exists a test U such that, for any test V, there
is a constant ¢ with the property that

my(z) = mo(a) + ¢

for all z. The critical level of x with respect to a fixed universal test we
shall call simply the critical level of x and denote by m(x). The relation
to the complexity measure of Kolmogorov is given by the following
theorem.

- There exists a conslant ¢ such that

[ l{z) — K(z|l(z)) — m(z)| = ¢

Jor all binary strings x.
Define

V= {m,z; K(z|l(z)) < l(z) — m}

= {m,z; (Ap)U(p) < Uz) — m & A(p,l(z)) = 2)} C N X X,
where A denotes the universal algorithm basie to the complexity meas-
ure. V is a test and

my(z) = l(z) — K(z | U{z)) — 1,
so that
I(z) — K(z|l(z)) £ m(z) +¢
for some constant c.
To prove the inequality in the converse dircction let U denote the
universal test defining the critical level and choose a general recursive
function f of type N — N X X which enumerates U without repetitions.

By means of f we construct the following algorithm from X X N to X.
If /(1) = my, 21, then

A(00 -+ 00, I(x1)) = 1,
(z) — my

where the length of the string of zerosis I(z;) — mi . If f(2) = m., x; and
my, I(21) = me, l{x2), then
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i

X2,

400 ---01,1(xs))
Wzg) — my
otherwise
A(OO v 00, l(ﬂ?z)) = T2,

l(l’z) —_ Mz

Since U is a test, the construction can be carried on without ambiguities.
Evidently

Ki(z|l(z)) = l(z) — m(z),
so that
K(z|l(z)) = l(z) — m(x) + ¢,

where ¢ is a constant. The proof is finished.

"Let us return to the concrete test considered in the beginning of this
section. By means of the universal test we obtain the‘ifollo“ ing in-
equality, holding for all binary strings & -+ £,

| 250 — 0] £ f(m(bag2 -+ &) + ¢, n),
or, equivalently,
|25, —n| £ f(n — K(bka -+ Ea|n)-+ ¢, n).
According to the theorem of de Moivre and Laplace,
%f(m, n) »®7(1 —-2™7)
with

z 1 .
&(z) = f_w =y,

so that |2s, — n| is of the order of magnitude +/n provided
K(ti&s - - - £ | n) equals n approximately.

III. THE DEFINITION OF INFINITE RANDOM SEQUENCES

In the case of finite binary sequences the introduction of the universal
test led to nothing but a useful reformulation of what could have been
established by means of the complexity measure of Kolmogorov. We shall
now see that by defining in a similar way a universal sequential test we
obtain a natural definition of infinite random sequences. Such a deﬁmtlon
has so far not been obtained by other methods.
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Imagine a random device, such as the tossing of a coin, capable of
delivering a potentially infinite binary sequence &£ --- & --- . To
conform with our intuitive conception of randomness, such a sequence
has to satisfy for example the law of large numbers,

amonn 27
or, requiring more, the law of the iterated logarithm,
— 25, —7n

lim

————————— 1.
a== 4/2n log log n =

In the measure theoretic probability theory this is motivated by proving
that the set of all sequences violating the law has measure zero. By defi-
nition this means that to every e > 0 there exists an open covering U of
the set such that

p(U) S e

Here p denotes the usual measure with respect to which all coordinates
are independent and take on the values 0 and 1 with probability 1. Let
3(&ike -+ - &) denote the set of all infinite sequences beginning with
£182 - - - &, . Then, instead of U, we may just as well consider the set

U={z;3(z) €U} € X.
Note that, conversely,

a= U i)
zeU
if and only if U is open. Further, U has the property that it contains all
possible extensions of any of its elements, y being an extension of z, in
symbols y = =, if the string ¥ begins with z. In other words, U may be
regarded as the critical region of a sequential test on the level . The
definition of a null sct may hence be stated in statistical terms as follows.
Tor every € > 0 there exists a sequential test on that level which rejects
all sequences of the set.

We can now argue just as in the previous section. Any sequential test of
present or future use in statistics is given by an explicit prescription,
which, for every level of significance ¢ = %, 1, ---, tells us for what
sequences the hypothesis is to be rejected. Equivalently, when proving
the law of large numbers or some other theorem involving the words
almost surely, we actually construet an open covering of measure Ze¢ for
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arbitrarily small ¢, which, without restriction of generality, we may take

to be of the form 27", m = 1, 2, - - - . These statements are made precise
by assuming that the family of critical regions (open coverings)
UCNXX

is recursively enumerable. U has to satisfy the following restrictions. If
m,x € U, then so doesn, yforalln £ mand y 2 x. I'urther, the number
of sequences of length n contained in

U, = {z;m,z € U}

is £2"7" for all m and n.

Again we can prove the key theorem to the effect that the set of all
sequential tests (open coverings) is effectively enumerable.

There exists a recursively enumerable sel T C N X N X X such that U
s a scquential test if and only if

U={m,zx;i,mz € T}
for somei =1,2, -,

The proof differs only negligibly from that of the previous section. We
choose the partial recursive function f just as before, fix an arbitrary
7 =1,2, ... and caleulate f(z, 1) = my, 21 if defined. Provided we do
not violate the conditions connected with the level of significance (in this
case, M1 < I(x1)) we include into 7'¢, m, zfor allm < myand 2 = 2, .
Otherwise the section of 7' at 7 remains empty. If we have not finished
already, we continue by trying to caleulate f(7, 2) = m., 22 and includ-
ing ¢, m, x for all m £ m; and £ = 2. . These indications should suffice.

There exists a universal sequential lest U such that, for any sequential
lest V,

Vare © Un m=12---,

where ¢ 1s a constant (dependent on U and V).
Again U is obtained as the image of 7" under the mapping
,m+ i, x—m,z.

It is readily verified that U is a sequential test satisfying the conditions
of the theorem.
The critical level

me(x) = maxm
2C Uy,

with respect to a sequential test U satisfies not only
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0 = mu(z) £ ()
but also
mu(z) < my(y)

for all 2 £ y. Consequently, we can introduce the critical level of an
infinite sequence & -+ £, - -

my(bba-r - bn-00) = li_l,\; my(bife «++ £n),

0= mu(fl& s b ) = +ow.

Having fixed a universal test U, we shall drop the index U and speak
simply of the (sequential) critical level.

An infinite binary sequence & - -+ £, -+ - is called a random sequence
provided

m(Gks e fa o) < Ao

Note that this definition does not depend on the choice of the universal
test with respeet to which the critieal level is defined.
Abnost all infinite binary sequences are random sequences.
Introduce the open sets
a, = U 3z), m=12,---.

IEUp,
Since U is a sequential test,

U2 U 2 -
and
p(Un) = 277, m=12 ...

The set of all nonrandom sequences is precisely the null set

<
n ‘11-1"
m=1
provided U was chosen universal.

Let us make another reformulation, this time in the spirit of con-
structive analysis. An open set Ut of infinite binary sequences is called
constructively open if {z; 3(x) € U} is recursively enumerable.
U, Uz, -+ - is a constructive sequence of constructively open sets pro-
vided {m, z; 3(x) € U,} is recursively enumerable. @ is defined to be a
constructive null set if
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'G'_c;‘umy 7n=1121...’

where U1, Us, - - - is a constructive sequence of constructively open sets
such that

p(Un) — 0

constructively fast ag m — . By this we understand that u(u,) < 27*

for all m = h(k), where h is a general recursive function. In this termi-
nology we can say that the set of all nonrandom sequences form a maxi-
mal constructive null set, i.e., a constructive null sct @ with the remark-
able property that any constructive null set ® is contained in it. IFor let
® be an arbitrary construetive null set and Uy, Vs, --- the associated
coverings. Without restriction of generality we may assume that

'01 _:2 '(_)2 2 ceey,
“(tom) = 2-"‘:
so that
V = {m, x; 3(x) & U}
is a sequential test. According to the definition of a universal sequential
test U .
Vore & Unm, m=1,2 ...

for some constant ¢. Consequently,

0

(Bg. n Om = n Um-f—cg n (um=a,
m=1

m=1 m=1

-]

where, as before,
U, = U 3(z), m=12 ...,

TeUpy

IV. RANDOM SEQUENCES WITH RESPECT TO AN ARBITRARY
COMPUTABLE PROBABILITY DISTRIBUTION

So far we have introduced random sequences that were to represent
the result of tossing a perfect coin. We shall now see that in a similar way
we can introduce finite and infinite sequences which are random with re-
spect to an arbitrary computable probability distribution.

Let p(z) denote the probability of the binary string # (or, better, the
conditional probability of x given its length). The conditions to be satis-
fied by p are as usual
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p(z) 2 0, (E p(z) =1

for all n. By the computability of p we understand that p is a general
recursive function which for every z calculates a Godel number of the
computable real number p(z).

In the case of a random device giving out sequentially a potentially
infinite binary sequence, the probability p(z) that the first n digits equal
x = b - -+ £ must satisfy

p(x) = 0: p() = 17
p(z) = p(20) + p(x1)

for all . The computability of p is defined as before.
A test for p is a recursively enumerable set

UCNXX
with the usual property that
un2U0.2 --- s
the condition on the level being

p(z) <27
2eUpi(z)=n
for all m and n. The choice of strict inequality is due to the fact that if
a and b are computable real numbers such that ¢ < b, we will get to
know this sooner or later by calculating the successive approximations
to a and b. This does not hold, in general, when < is changed to =.

A sequential test for a sequential computable probability distribution
is defined in the same way except for one additional condition. With x the
critical region U, has to containally = z,m = 1,2, --- .

Using the technique that has been demonstrated twice already, we can
prove the cffective enumerability of all (sequential) tests for a certain
(sequential) computable probability distribution and hence the existence
of a corresponding universal (sequential) test. The critical level is intro-
duced and, in the sequential case, extended to infinite sequences,

0 =m(hat -+ b--) = lijgm(&fz b)) = .

Finite binary strings = are random with respect to the computable
probability distribution considered, provided the critical level m(z) is
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low. In the infinite case the dependence on the choice of the universal
sequential test disappears, &, -+ - £, - - - being by definition random if

"1(5152"'5""‘) < +00,

The set of all nonrandom sequences is precisely

«©

N Un,

where U denotes the universal sequential test and

U, = U 3(2).
€Uy
Letting = denote the measure (in the usual sense) obtained by extending
the computable probability distribution p, the set of all random se-
quences has measure one with respect to 7. It would be natural to call
it the construetive support of =.

V. FINITE BERNOULLI SEQUENCES

For an arbitrary binary string &8, <+ - & withs, = &+ &+ -+ + &,
put

p&de -+ &) = 0™(1 — 0)"™™,

where 0 < 0 = 1. If 6 is a computable real number, this defines a com-
putable probability distribution and the results of the preceding section
can be applicd to obtain a definition of finite and infinite Bernoulli
sequences associated with a computable success probability. Thesc are
precisely the Bernoulli sequences that can be produced by a computing
machine with access to a table of random numbers asdefined inSectionsII
and III, and so we have met exactly the needs of the Monte Carlo theory.
However, we cannot be satisfied with this as a mathematical deseription
of the sequences obtained, e.g., by tossing an imperfect coin. Indeed,
there secems to be no reason whatsoever to assume that such a success
probability, thought of as a physical constant associated with the coin,
is 2 computable real number.

We shall, instead, define Bernoulli sequences without using any meas-
ure theoretic concepts, by merely requiring that the successes be located
at random. In other words, a Bernoulli sequence is a sequence whose only
regularities are given by the frequencies of successes and failures. This
is connected with the statistical concept of sufficiency. Indeed, the
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success and failure frequencies form a sufficient statistic for the class of
all Bernoulli distributions.

A test for the Bernoulli property or, simply, a Bernoulli test is given
b,j a recursively enumerable set

UCNXX
such that
U2U0,2 - 2Un2 .

I'urther, the number of sequences with s, ones and n — s, zeros con-
tained in U, should be

<o ("

= s,

for all m, n and s, . Thus, the test is carried out as a conditional test.
Now everything can be carried out just as before.

There exists a recursively enumerable set T © N X N X X such that U
ts a Bernoulli test if and only if

U={m,z;i,mz € T}

forsomei = 1,2 ...
There exists a universal Bernoulli test U such that if V is an arbitrary
such test,

in

Vate & Un, m=12---,

for some constant c.
Tinite Bernoulli sequences are those strings whose critical level (with
respect to a fixed universal test),
m(z) = maxm,
€Uy,
is low. Again we could have reached this definition equivalently by
means of the complexity measure of Iolmogorov. In terms of that con-
cept the Bernoulli sequences are defined by requiring the conditional
complexity, given the frequencies of zeros and ones, to be maximal, i.e.,
approximately equal to
n
log (Sn) .
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Here and in the sequel the logarithm is taken to the base two. Note that
- n
IX(EI‘& M fnlsnyn - Sn) é IOg (S > + c,

where ¢ is a constant.
There exists a constant ¢ such that

=c

log(’s’> — K182 & |8ayn — 52) — m(f1fa o+ £a)

Sor all binary strings &8z + <+ &4«

The proof so closely parallels that of the corresponding theorem of
Section II, that there is no need to give it in detail.

Let us make a slight but illuminating digression. The interpretation of
a probability is currently (e.g., in the Grundlagen by Kolmogorov)
governed not only by the clause that the relative frequency in a large
number of repetitions of the experiment should be close to it, but also by
the following somewhat obscure additional clause. If the probability is
very small, we should be practically sure that the event does not occur
in a single trial. In the present formalism we can show that if £i& -« - &,
is a Bernoulli sequence with a very low relative success frequency s,/n,
then, necessarily, £ = 0, so that the event cannot have occurred in the
first trial. In other words, the assumption that a success occurred already
in the first trial implies substantial regularities in the sequence.

There exists a constant ¢ such that

m(fr - &) S Iog;l —c

n

implies & = 0.

Construct the test which rejects on the level e = 27" when & = 1 and
so/n = 27", Then the number of rejected sequences of length n with
success frequency s, equals

(@2)=2()=()
Sp — 1 n \s/ = s/’

so that the definition is legitimate. Comparison with the universal test
yields the theorem.

VI. INFINITE BERNOULLI SEQUENCES
The definition of infinite Bernoulli sequences is now straightforward.
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We note that these are precisely the sequences for which von Mises intro-
duced the term Kollektiv. In our case the Merkmalraum consists merely
of two elements, but the extension to an arbitrary finite number is
trivial.

A sequential Bernoulli test is a recursively enumerable set

UCNXX

which together with m, z includes n, y foralln < m and y = z. Further,
the number of strings of length n with s. successes contained in
U. = {z;m, z € U} should be

<2_m( )
Sn
fOI' ﬂll m,n and Sn .

There exists a recursively enumerable set T © N X N X X, such that the
sequential Bernoullt lests are precisely the sels
{m,z;7,m,x € T}, 1=1,2,--..

Maybe it is worth while pointing out the following simple fact which is
needed in the proof. Let A be a set of strings of length n and let a; de-
note the number of strings in A containing 7 sucecesses. We suppose that

2‘“(’.‘), i=01--,n
1

Let B be the set of all strings of length n 4 1 whose initial segments
belong to A, and define b; in analogy with a; . Then,

—m —m 1
wanta s (1) 4 () -2 (17),

7 =0,1,---n +4 1. Using this the proof is not more complicated than
that of Section III. Taking again the image of 7' under the mapping

IIA

a;

,m-+i,x—-mz

we obtain a universal test.
There exists a universal sequential Bernoulli test U such that, for any
sequential Bernoulli test V,

Vise C Un, m=12--,

where ¢ s a conslant.
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Allowing infinite values, the critical level with respect to a sequential
Bernoulli test is extended to infinite sequences. Bernoulli sequences
(Kollektivs, in the terminology of von Mises) arc defined by the re-
quirement that the critical level (with respeet to a universal test) be
finite,

m(Eids - Em o) < oo

Let 7y denote-the measure over the space of infinite binary sequences
with respect to which all coordinates are independent and Bernoulli dlS-
tributed with success probability 8,0 < 6 £ 1.

The set of Bernoulli sequences has measure one with respect to my for all
0=6=1.

As before, put

U, = U 35(x)
2€Up
so that
0" (1 — 0)" " T ws(Um)

ZEU B I(2)=n

asn — . But

Z 08,,(1 _ o)n—cn < om i n 0&,,(1 _ o)n—e,, — 2—m,
S,

2eUmi(z)=n 8,=0
and hence

mo(Un) S 277, m=12 ---,

T (mfll ‘U.m) = 0.

Note that the set of Bernoulli sequences is the complement of

el

N Un.
m=1

The aim of the present paper has only been to give the basic definitions.
1t is, however, too difficult to resist the temptation of proving two im-
portant properties of Bernoulli sequences. Remember that our definition
is a kind of irregularity condition in that we require the successes to be
located at random, no restriction being laid upon the frequencies. It is a
remarkable fact that the existence of the limit of the relative frequency
as the number of trials grows beyond all bounds is a consequence of this



DEFINITION OF RANDOM SEQUENCES 619

irregularity condition. Recall that in the tentative definition of von
Mises the convergence of the relative frequencies is introduced as a
postulate, which is supplemented by a kind of irregularity condition.
Let &1&5 <+ - &a ++ - be an infinile Bernoulli sequence. Then the relative
Sfrequency s./n converges asn — .
For an arbitrary rational ¢ > 0 we construet the test which rejects on
the level 27" provided
S _ Sj

<| > e
1

for some ¢, 7 = h(m), where & is a suitable nondecreasing general recur-
sive function, an explicit definition of which we could evidently write
down with some effort. A comparison with the universal test completes
the proof.

Note that, by the law of large numbers, all real numbers 6 (not only
computable ones) occur as limit frequencies,

lim 3 = o, 0

n»x 1

1A

0

A
[y

We finally state the analogue of the last theorem of the previous
section, the idea of the proof being the same.
The limit frequency cannot vanish,

unless £, = 0 for all n.

This theorem is important since, in the case of an experiment with an
arbitrary finite number of outcomes, it allows us to reduce the sample
space by excluding those outcomes whose limit frequencies equal zero.
More suggestively, an event with vanishing limit frequency is actually
impossible. This contrasts sharply with the conception of von Mises, who
explicitly stated that the opposite might occur. It seems as if he strained
his seldom failing intuition on this point in order not to conflict with his
somewhat arbitrary definition of randomness.

Recervep: April 1, 1966
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